Privacy-Preserving Classification and Clustering Using Secure Multi-Party Computation
نویسندگان
چکیده
Nowadays, data mining and machine learning techniques are widely used in electronic applications in different areas such as e-government, e-health, e-business, and so on. One major and very crucial issue in these type of systems, which are normally distributed among two or more parties and are dealing with sensitive data, is preserving the privacy of individual’s sensitive information. Each party wants to keep its own raw data private while getting useful knowledge from the whole data owned by all the parties. Privacy-preserving Data Mining is dealing with this problem and many protocols have been introduced for various standard data mining algorithms so far. In this paper, we propose some new protocols for two popular techniques, classification and clustering, when data is horizontally or vertically partitioned among two or more parties. In classification we use Gini Index applying on ID3 algorithm to create decision tree from distributed data. We also propose two protocols for k-means Clustering which is a prominent clustering algorithm in data mining techniques. Some secure two and multi-party building blocks such as secure comparison, secure multi-party addition and multiplication are also proposed to use as sub-protocols in our algorithms.
منابع مشابه
Privacy-Preserving Clustering Using Representatives over Arbitrarily Partitioned Data∗
The challenge in privacy-preserving data mining is avoiding the invasion of personal data privacy. Secure computation provides a solution to this problem. With the development of this technique, fully homomorphic encryption has been realized after decades of research; this encryption enables the computing and obtaining results via encrypted data without accessing any plaintext or private key in...
متن کاملPrivacy Preserving PageRank Algorithm By Using Secure Multi-Party Computation
In this work, we study the problem of privacy preserving computation on PageRank algorithm. The idea is to enforce the secure multi party computation of the algorithm iteratively using homomorphic encryption based on Paillier scheme. In the proposed PageRank computation, a user encrypt its own graph data using asymmetric encryption method, sends the data set into different parties in a privacy-...
متن کاملClassification Rule Mining through SMC for Preserving Privacy Data Mining: A Review
Data Mining and Knowledge Discovery in Databases are two new dimensions of database technology that investigate the automatic extraction for identifying hidden patterns and trends from large amount of data. Several researchers have contributed variety of algorithms for generating the classification rule by considering different cases like scalability, computation time, I/O complexity, missing a...
متن کاملA Model Based Framework for Privacy Preserving Clustering Using SOM
Privacy has become an important issue in the progress of data mining techniques. Many laws are being enacted in various countries to protect the privacy of data. This privacy concern has been addressed by developing data mining techniques under a framework called privacy preserving data mining. Presently there are two main approaches popularly used -data perturbation and secure multiparty compu...
متن کاملPrivacy Preserving DBSCAN Algorithm for Clustering
In this paper we address the issue of privacy preserving clustering. Specially, we consider a scenario in which two parties owning confidential databases wish to run a clustering algorithm on the union of their databases, without revealing any unnecessary information. This problem is a specific example of secure multi-party computation and as such, can be solved using known generic protocols. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008